Abbiamo scoperto una funzione nascosta di ChatGPT all’interno del programma PDF Gear che consente di riassumere automaticamente libri, relazioni e tesine. Questa funzione può gestire anche documenti in formato PDF.
Un editor di file PDF efficace non dovrebbe solo visualizzare i documenti o combinarne diversi, ma anche consentire modifiche al testo e l’aggiunta di immagini. Adobe Acrobat è considerato il miglior software per queste esigenze, poiché può convertire PDF in documenti Word ed Excel, permettendo così di modificarne il contenuto. Inoltre, consente modifiche direttamente sui PDF stessi. Tuttavia, il suo costo, con un abbonamento minimo di 15 euro al mese, può essere un ostacolo.
Fortunatamente, esistono altri programmi gratuiti che offrono funzionalità simili senza necessitare di registrazione. Un esempio eccellente è PDF Gear (https://www.pdfgear.com/), disponibile su diverse piattaforme come Windows, macOS, iOS e presto anche Android.
La suite completa
PDF Gear offre la possibilità di gestire e convertire file PDF in Word, Excel e PowerPoint direttamente online. È sufficiente caricare il documento e, in pochi istanti, si ottiene la versione convertita senza pubblicità. Per chi preferisce non installare il software, questa funzionalità online è ideale.
Tuttavia, avere PDF Gear installato sul proprio computer offre vantaggi significativi. Evita di caricare documenti riservati online e fornisce accesso a funzioni esclusive, tra cui l’integrazione dell’intelligenza artificiale di ChatGPT nei PDF. L’interfaccia utente è semplice e disponibile in italiano, e dopo l’installazione si apre con una schermata iniziale che elenca tutte le funzioni principali.
L’utente può scegliere di convertire un PDF in un file Word, Excel o PowerPoint, oppure di modificare direttamente il testo all’interno del PDF. La decisione su quale metodo utilizzare dipende dalle specifiche esigenze: per documenti con molte immagini, è spesso più pratico modificare il testo direttamente nel PDF. Tuttavia, per modifiche estensive al testo, la conversione in Word è generalmente la soluzione più efficiente. Il software permette inoltre di aggiungere firme, timbri, immagini e selezionare porzioni di testo.
Chat GPT
Una funzionalità unica della versione Windows di PDF Gear è denominata “Chatta con PDF”. Questa opzione integra ChatGPT, un avanzato modello di intelligenza artificiale, permettendo di sintetizzare il contenuto del documento in italiano o di eseguire operazioni come proteggere il file con una password o comprimerlo per risparmiare spazio.
Per utilizzare questa funzione, basta inserire i comandi nella casella di testo, simile a quella usata per ChatGPT. Questa caratteristica è estremamente vantaggiosa, poiché consente una gestione interattiva e diretta dei file PDF.
Quando ci si riferisce all’Intelligenza Artificiale, si evoca immediatamente l’immagine di tecnologie all’avanguardia, di robot in grado di comprendere e prendere decisioni autonome, e di un mondo futuristico in cui uomini e macchine coesistono. Tuttavia, l’Intelligenza Artificiale e il suo impiego sono molto più concreti di quanto si possa immaginare e trovano applicazione effettiva in diversi settori della vita quotidiana. È importante notare che tali applicazioni risultano meno invasive di quanto spesso si possa pensare o di quanto venga rappresentato nei film di fantascienza, i quali traggono ispirazione dall’Intelligenza Artificiale come tema centrale per numerose serie, alcune delle quali di successo.Ma cos’è realmente l’Intelligenza Artificiale e come si è sviluppata?
Dal punto di vista tecnico, l’Intelligenza Artificiale rappresenta un campo dell’informatica che si occupa della programmazione e del design di sistemi hardware e software, i quali conferiscono alle macchine determinate caratteristiche considerate tipicamente umane, come ad esempio la percezione visiva, spazio-temporale e decisionale. In altre parole, l’Intelligenza Artificiale non si limita solo all’aspetto dell’intelligenza intesa come capacità di calcolo o conoscenza di dati astratti, ma si estende anche a tutte quelle diverse forme di intelligenza riconosciute dalla teoria di Gardner. Queste forme comprendono l’intelligenza spaziale, sociale, cinestetica e introspettiva. L’obiettivo di un sistema intelligente è quindi quello di cercare di riprodurre una o più di queste diverse forme di intelligenza, che, sebbene comunemente associate all’essere umano, possono effettivamente essere replicabili da specifiche macchine.
Quando nasce l’Intelligenza Artificiale?
Secondo la definizione odierna, l’Intelligenza Artificiale ha avuto origine con l’avvento dei computer nel 1956. In quell’anno si tenne un convegno negli Stati Uniti, al quale parteciparono importanti esperti del campo che successivamente sarebbe stato denominato Intelligenza Artificiale, ma che allora era noto come Sistema Intelligente. Durante questo entusiasmante evento, furono presentati programmi in grado di eseguire ragionamenti logici, in particolare nell’ambito della matematica. Il programma Logic Theorist, sviluppato dai ricercatori informatici Allen Newell e Herbert Simon, dimostrò la capacità di dedurre teoremi matematici a partire da determinate informazioni.
Come si può immaginare, gli anni successivi alla nascita dell’Intelligenza Artificiale furono un periodo di fervore intellettuale ed esplorativo. Università e aziende informatiche, tra cui spicca IBM, si dedicarono alla ricerca e allo sviluppo di nuovi programmi e software capaci di pensare e agire come esseri umani, almeno in determinati campi e settori. Emergono programmi sempre più complessi nel dimostrare teoremi, e soprattutto, viene creato Lisp, il primo linguaggio di programmazione che ha fornito la base per i software di Intelligenza Artificiale per oltre trent’anni. Gli anni che seguirono sono stati un periodo di grande progresso e scoperte nel campo dell’Intelligenza Artificiale.
La nuova era dell’Intelligenza Artificiale si apre con l’utilizzo di un algoritmo innovativo, concepito già alla fine degli anni Sessanta, ma che non ha trovato piena applicazione a causa delle limitazioni dei primi programmi di Intelligenza Artificiale nel campo dell’apprendimento. Parliamo dell’algoritmo che consente l’apprendimento per reti neurali, il quale è stato sperimentato sia in ambito informatico che psicologico. Grazie a questa duplice applicazione, gli sviluppatori di Sistemi Intelligenti hanno scoperto un’ampia gamma di possibilità. In particolare, il primo vero successo dell’Intelligenza Artificiale è stato l’incontro tra Deep Blue, una macchina sviluppata da IBM, e il campione di scacchi in carica, Garry Kasparov. Sebbene i primi scontri siano stati vinti da Kasparov, i continui miglioramenti apportati al sistema di apprendimento di Deep Blue hanno permesso alla macchina di ottenere la vittoria nelle partite successive. Questa vittoria, come confermato dallo stesso campione di scacchi, è stata attribuita al fatto che la macchina aveva raggiunto un livello di creatività così elevato da superare le conoscenze stesse del giocatore.
Le basi dell’intelligenza artificiale
Alla base dei problemi con lo sviluppo di sistemi e programmi di Intelligenza Artificiale ci sono tre cose fondamentali che riguardano il modo in cui gli esseri umani si comportano. Prima di tutto, c’è bisogno di una conoscenza che non sia noiosa e sterile, ma che abbia un tocco di vita. Poi, c’è bisogno di avere una coscienza che permetta di prendere decisioni non solo basandosi sulla logica, ma anche sull’abilità di risolvere problemi in modo diverso a seconda del contesto in cui ci si trova.
Grazie all’uso delle reti neurali e di algoritmi che sanno ragionare come noi umani in diverse situazioni, i sistemi intelligenti stanno migliorando sempre di più le loro abilità comportamentali. Per farlo, la ricerca si è concentrata non solo nello sviluppo di nuovi algoritmi, ma soprattutto nell’aumentare il numero di algoritmi che possono imitare i comportamenti diversi in base agli stimoli ambientali. Questi algoritmi complessi, inseriti nei sistemi intelligenti, sono in grado di “prendere decisioni”, cioè fare scelte in base al contesto in cui si trovano. Ad esempio, quando gli algoritmi sono collegati ai veicoli autonomi, l’auto può decidere, in caso di pericolo, se sterzare o frenare a seconda della situazione. Dipende dalle informazioni che arrivano dai sensori e calcolano quale opzione garantisca una maggiore sicurezza per il conducente e i passeggeri.
Le decisioni prese dai veicoli autonomi e dagli altri sistemi di Intelligenza Artificiale si basano su algoritmi specifici che definiscono una conoscenza di base e una conoscenza più ampia che viene creata tramite l’esperienza. Per migliorare sempre di più gli algoritmi, è stato sviluppato un settore dedicato chiamato “rappresentazione della conoscenza”. Questo settore studia come ragioniamo come esseri umani e, soprattutto, come rendere questa conoscenza comprensibile alle macchine tramite un linguaggio e comandi sempre più precisi e dettagliati. Quando si parla di conoscenza umana e di trasferimento di questa conoscenza alle macchine, non si tratta solo di nozioni accademiche. Si tratta piuttosto di esperienza e della capacità di comprendere nuove informazioni attraverso quelle che abbiamo già nel nostro sistema. Queste informazioni vengono fornite alle macchine attraverso diverse modalità, le più importanti delle quali si basano sulla Teoria dei Linguaggi Formali e sulla Teoria delle Decisioni.
Nel caso della Teoria dei Linguaggi Formali, utilizziamo diversi approcci (i principali sono l’approccio generativo, riconoscitivo, denotazionale, algebrico e trasformazionale) che si basano sulle teorie delle Stringhe e sul loro utilizzo. Le Stringhe rappresentano veri e propri linguaggi formali, ma le loro proprietà variano a seconda dell’approccio che si utilizza.
L’apprendimento automatico
Un grande passo avanti nell’Intelligenza Artificiale è stato compiuto quando sono stati creati algoritmi specifici che permettono alle macchine di migliorare il loro comportamento (cioè la capacità di agire e prendere decisioni) attraverso l’esperienza, proprio come fanno gli esseri umani. È fondamentale sviluppare algoritmi che possano imparare dai propri errori per creare sistemi intelligenti che operino in contesti imprevedibili dai programmatori. Grazie all’apprendimento automatico (machine learning), una macchina può imparare a compiere azioni anche se non sono state programmate in anticipo.
Per i non esperti, l’apprendimento automatico è probabilmente la parte più “romantica” dell’Intelligenza Artificiale, che ha ispirato diversi registi per i loro film famosi che raccontano come le macchine e i robot migliorino nel tempo grazie all’esperienza. Oltre all’aspetto scenico e affascinante, l’apprendimento automatico è il frutto di una profonda ricerca teorica e pratica, basata sulla teoria computazionale dell’apprendimento e sul riconoscimento dei pattern. L’apprendimento automatico è complesso e può essere suddiviso in tre modalità a seconda delle richieste di apprendimento rivolte alla macchina: apprendimento supervisionato, apprendimento non supervisionato e apprendimento per rinforzo. Le differenze tra queste modalità risiedono principalmente nel contesto in cui la macchina deve imparare le regole generali e specifiche che portano alla conoscenza. Nell’apprendimento supervisionato, ad esempio, vengono forniti alla macchina esempi di obiettivi da raggiungere, mostrando le relazioni tra input, output e risultato. La macchina deve quindi estrarre una regola generale dai dati forniti, in modo che possa scegliere l’output corretto ogni volta che viene stimolata da un determinato input per raggiungere l’obiettivo.
Il futuro dell’Intelligenza Artificiale
Se fino a pochi anni fa il principale problema di tutti gli scienziati coinvolti nella ricerca relativa all’Intelligenza Artificiale era quello di poter dimostrare la realistica possibilità di utilizzare sistemi intelligenti per usi comuni, oggi che questo obiettivo è ampiamente raggiunto ci si chiede spesso quale possa essere il futuro dell’Intelligenza Artificiale. Sicuramente molta strada deve essere ancora fatta, sopratutto in determinati settori, ma la consapevolezza che l’Intelligenza Artificiale oggi rappresenta una realtà e non più un’ipotesi, i dubbi sono soprattutto relativi alle diverse possibilità di utilizzo dei sistemi intelligenti e al loro impatto sul tessuto sociale ed economico.
E se da un lato l’entusiasmo per l’evoluzione tecnologica è sicuramente molto evidente in diversi settori, dall’altro la paura che a breve le macchine potrebbero sostituire del tutto l’uomo in molti luoghi di lavoro si è insinuata in maniera sempre più insistente nelle menti di molti. L’evoluzione tecnologica già in passato ha portato a sostituire la mano d’opera umana con macchine e computer che, in maniera più rapida e soprattutto più economica, sono stati utilizzati in diversi settori. Con l’uso massivo dell’Intelligenza Artificiale sarà possibile perdere ulteriori posti di lavoro ma è anche vero che si apriranno sempre più strade per la realizzazione di nuove tipologie di figure professionali. Ma il contrasto tra uomo e macchina è un settore molto più ampio che non è solo relativo all’evoluzione dell’Intelligenza Artificiale e dei sistemi intelligenti, ma anche e soprattutto relativo alla morale e all’etica lavorativa e al corretto utilizzo delle macchine nel rispetto dell’uomo. Probabilmente la direzione che si prenderà non è ancora ben delineata, ma potrà portare a una nuova rivoluzione culturale e industriale
Questo sito consente l'invio di Cookie di terze parti al fine di migliorare la navigazione offrendo servizi correlati. Premendo il tasto "Accetta" Cookie accetti l'utilizzo dei cookie. Per ulteriori informazioni su come questo portale utilizza i Cookie puoi selezionare il tasto Leggi di più. Puoi modificare il consenso premendo il tasto Impostazioni.
Questo sito Web utilizza i cookie per migliorare la tua esperienza durante la navigazione nel sito Web. Di questi, i cookie classificati come necessari vengono memorizzati nel browser in quanto sono essenziali per il funzionamento delle funzionalità di base del sito Web. Utilizziamo anche cookie di terze parti che ci aiutano ad analizzare e capire come utilizzi questo sito web. Questi cookie verranno memorizzati nel tuo browser solo con il tuo consenso. Hai anche la possibilità di disattivare questi cookie. Ma la disattivazione di alcuni di questi cookie potrebbe influire sulla tua esperienza di navigazione.
I cookie necessari sono assolutamente essenziali per il corretto funzionamento del sito web. Questa categoria include solo i cookie che garantiscono funzionalità di base e caratteristiche di sicurezza del sito web. Questi cookie non memorizzano alcuna informazione personale.
Cookie
Durata
Descrizione
__hssrc
sessione
This cookie is set by Hubspot whenever it changes the session cookie. The __hssrc cookie set to 1 indicates that the user has restarted the browser, and if the cookie does not exist, it is assumed to be a new session.
_GRECAPTCHA
6 mesi
This cookie is set by the Google recaptcha service to identify bots to protect the website against malicious spam attacks.
cookielawinfo-checkbox-advertisement
1 anno
Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category .
cookielawinfo-checkbox-analytics
11 mesi
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 mesi
The cookie is set by the GDPR Cookie Consent plugin to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 mesi
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-non-necessary
11 mesi
Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Non-necessary" category .
cookielawinfo-checkbox-others
11 mesi
Set by the GDPR Cookie Consent plugin, this cookie is used to store the user consent for cookies in the category "Others".
cookielawinfo-checkbox-performance
11 mesi
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
Qualsiasi cookie che potrebbe non essere particolarmente necessario per il funzionamento del sito Web e viene utilizzato specificamente per raccogliere dati personali dell'utente tramite analisi, pubblicità, altri contenuti incorporati sono definiti come cookie non necessari. È obbligatorio ottenere il consenso dell'utente prima di eseguire questi cookie sul tuo sito web.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Cookie
Durata
Descrizione
__cf_bm
30 minuti
This cookie, set by Cloudflare, is used to support Cloudflare Bot Management.
__hssc
sessione
HubSpot sets this cookie to keep track of sessions and to determine if HubSpot should increment the session number and timestamps in the __hstc cookie.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Durata
Descrizione
__hstc
sessione
This is the main cookie set by Hubspot, for tracking visitors. It contains the domain, initial timestamp (first visit), last timestamp (last visit), current timestamp (this visit), and session number (increments for each subsequent session).
_ga
2 anni
The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_ga_78N9WP2E3X
2 anni
This cookie is installed by Google Analytics
CONSENT
2 anni
YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.
hubspotutk
sessione
HubSpot sets this cookie to keep track of the visitors to the website. This cookie is passed to HubSpot on form submission and used when deduplicating contacts.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Durata
Descrizione
VISITOR_INFO1_LIVE
6 mesi
A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface.
YSC
sessione
YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages.
yt.innertube::requests
Mai
This cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.